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ASTRACT

This report is concerned with the theoretical evaluation of the

buckling strength of a truncated hemisphere under axial tensile load.

The ed-ges of the shell are assumed to be restrained .from moving

radially or-from rotating. Theoretical results were obtained by

Vlasov' s small deflection theory and G4aerk ns method. The quick

convergence of the series solution is demonstrated. Comparison of

theoretical values with a few available experimental results is given.
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SYMBOLS

A B = coefficients of series expansion for radial deflection and
nstress function, respectively

a = mean radius (see Figure 2)

= Young s modulus

= sina

m = number of buckle waves in the circumferential, direction

P = axial tensile load per unit circumferential length at the
shell equator

q = radial load per unit middle surface area

Too To$ T099 T 9  = additional force components in the buckled shell

T o , Too = membrane force components prior to buckling

t = shell thickness

w = radial buckling displacement of a middle surface point

x = sin

a = altitude angle of the truncated edge (see Figure 2)

8,0 = spherical coordinates (see Figure 2)

IL = Poisson's ratio

# = stress function

72 = Laplace's operator

b12/a)-tan 0 (b/a 2 + sec * (2 2a be 2
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I. INTRODUCTION

A truncated hemisphere may buckle under an axial tensile load that exceeds
a certain critical value (Figure 1) because of compressive hoop stresses.' The

buckled shape is similar to that of a cylinder buckled under radial pressure,

with one half wave in the axial direction and many small waves in the circum-

ferential direction. The present theoretical study treats the case where both
the truncated edge and the edge at the equator are restrained from moving

radially or from rotating.

In the analytic work, Vlasov's equations of equilibrium and compatibility
condition (Reference 1) are used. These equations are satisfied by the use of

Galerkin's method (Reference 2) in conjunction with expressions for the radial
displacement and the stress functions which satisfy the approximate boundary

conditions.

Numerical results of theoretical buckling loads for shells of various geo-
metric configurations are given by curves as well as by simplified algebraic

formulas, and compared with a few experimental data.

II. THEORY

Using spherical coordinate system 0 and 8, as shown in Figure 2, the

equilibrium condition in the radial direction for a spherical shell element can

be expressed by the following equation:

1 At\2 4 V4 2'2 aq 0,(112 (l - z) "a) a a a {-

where

2Z2 2 2
a 2 = V- ta n 9 - + sec 2  0 -21 ,

210~

4 2 V2

and § is the stress function, in terms of which the additional force components

in the buckled shell wall are given by
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Fig. 1. Truncated Hemisphere Buckled by Axial Tension.
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Equations (2) approximately satisfy the equations of equilibrium for a shell

element in both the meridional and the circuiferential directions. The stress

function J. ad the radial ,defliection w are also related by the cormatbility

equation

a4V4 f . a2V2- . 0 (3)

Equations (1) and (3) are Vlasov' s equations. (Reference 1), expres:sed in spherical

'coordinates.

In .dealing with the problem of stability of a spherical shell, we must take

into account the radial component of stress existing prior to buckling. With the

assumption that these prebuckling stresses are adequately represented by the

membrane state of stress, we have

2
To = Tgo- P sec € (4)

During buckling, because of curvature changes, these finite membrane forces

contribute a radial component equal to

P 1 2w 2 b w + wi 5
q.= -'F -sec 0 .+tan 9W sec 0 (5).a, ,

which is used in Equation ( 1).
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( )The boundary conditions chosen to be satisfied. by the radial deflection w
and the stress function f are those corresponding to shell edges that are
restrained from moving radially ,or from rotating, motion in the merididnal

and circumferential directions being restrained insofar as rigid body motion is

concerned. These conditions may be expressed as

T w -0 at : O,, (6a)

T. 7 TO.-

or, for Equation (Z), as

0w at0 0,C -(6b)
2W. =o

A possible method of solving the problem would be to first assume'an

arbitrary radial deflection function that satisfies the radial deflection boundary
conditions (6); then Equation (3) could be solved for the stress function 4 in

terms of a particular solution involving w and the general solution of the homo-

geneous equation, the constants of integration being determined by the stress

0 function boundary conditions. Finally, the radial deflection function and the

derived stress function can be substituted into Equation, (1), which then could be

solved by means of the Galerkin method (Reference 2). Because the solution for

the stress function in terms of the radial deflection function is difficult, however,
this method of solution can be replaced by the equivalent process of choosing

arbitrary functions which satisfy the appropriate boundary conditions for both

the stress function 9 and the radial deflection function w and solving both

Equations (1) and (3)'by the Galerkin method. Thus,

f [127) a a

P, (6 2
-+a 0- e ase0,6( Od 0

(l oaa o
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f+ ar [aa4s 0 (7b):
where w, an da ons given by Eq

where w and @ are subjected to the boundary conditions given by Eqution (6b).

For converience, the following.substitutions are introduced:

x = sin 0 , I sin, a

- 4 x -, etc. , (8)

2 2 a x~

1- x

The boundary conditions (6b) then become

w -bw 0 at x= G,

0 -o at x= 0,1

Suitable expressions for w and .0 that satisfy conditions (9) may be taken. as

..N.

w nA x (x-4) cos mO
n=2, 3.,

(10)

_ Bx n (x-) n cos mE
Eat n=Z .. n

The substitution oftEqu4ations (0) into Equation (7) then. leads to

(Aenj + Rndn 0

n=2~~~ :L;7T '7 W nj - ~tnjjn nn 0 (11

j- 23,.
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( ) where

(-1) ci - (Zn+Zj-3)! C -;IFjn3l -(T+j"4), n,!) (~-)

+ 3n -ti+ ii

Zn n-) ZnZ~-1J 7n 2 i5n-2"(n+")' (+ -tZ)'

,IA (n+!,) ni(6+ZMA4tij3)

(Zn+Zj-z)+ 1 i'Ji n.J 3;

3 2mZjll +4 .(,6n-n- Z)n + ( j-3)A~ "Z
(4 + zzi 14+4),n-,j+ 1 1)(- ) -n j+2

(n-I)_zi_ 4(nj_3_ Q-n l)( 2(~ ,n+j1J

;j2n L2n+Zj I{(m-Z n

1) eItn+4( 1ji). (n+j ) , +-Z(6n +18n+4)(n )Ilj2) n~-)

4~~ Y(LL.LJI1 (n+--3)'. (n+j 4)1}

?(qjZ, ('n~j,) (n+j'+ 2 (Zn+ j+3 ,: (n4 )2(, +),n~) Z+j

m A (12)
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( 1 3+ f (ZnZj1, £2fn .i1{(.l)(t"  .nJ2) i ~ .. C)

2n++I M2 +0:Uj )', '-f J!): (14)z

For a nontrivial, solution for A.- and 1n, the determinaxt 0f, their coefficien~ts

in Equations- (l I) must vanish, yieldin.g the stability criterion for the pr-oblem.

The.lowest root of the determinal equation i s -the critical value of the .load
pararneter -PIi,

romputations for the buckling tension load were carried out for shells with

a.= 20, 30-and 40 degrees and, a/t ranging from 2,00 to 16,00. Four terms.each

were .usedin the -s ummatiot of' quations (10). The output is given by the non-

dimensional quan-ity PR/Et cos a against, a/t as shoWn- in Figure 3. It may be

seen ,that within the range of a. (that isj a is less than 40 degrees):, the buckling

strength of-the shell. isfar less influenced by c than by a/t. The curve shown

in- Figure 3, may als .be expressed by the following appro mate forrmula:

P/Et cos 2 a .= l.57( 1 (15)

In the limiting case where the radius of the sphere approaches in.ipity, the

problem is reduced to a..narrow, infinitely -long strip which is,. sbjected to com-

pression, along the length and tension across the width of the strip. In this case,

.the buc1)ling stress is of the form (Reference 3, p. 337)

.P/Et = k () (16)

where k is a constant coefficient.
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We recall, (Reference 3, pp. 450, 496); that the classical buckling stress for

cylindrical. shells under ,radial pre ssure is

(17)Ocr 4 ( 1~Z 1)

and that the classica buckling stress for spherical shells under external pes -

sure.:s

O-cr -1 _ ,t '

_ (18)-\3 (1 -z)

We may see from Equations (4) and (15), that he buckling characteristic of the

present problem is similar to the sphere problem rather than the, cylinder

problem.

Test data for five samples of various geometry were furnished by Douglas

Aircraft Company and are reproduced here in Table 1. The theoretical buckling

load parameter P/Et obtained by using one term in the summation of Equation

(10) as.the first approximation and succeedingly using more terms in the sum-

mation as higher approximations is also shown. We note that the convergence

of. the series solution is. good and that using .four terms in the s rummation is

adequate for practical purposes. The theoretical values are found to be about

twice greater .than the experimental values, a difference rather comnon in

buckling problems. In Table 1, also given are the theoretical circumferential

buckling wave numbers associated with the found theoretical minimum buckling

loads. These numbers seem quite high in comparison with the wave numbers

found by test. However, a study of the curves for the theoretical buckling load

versus wave numbers in Figure 4 leads to the belief that the actual buckling

wave number probably is determined by the initial imperfection of the shell

since the cur ve in the neighborhood of the theoretical minim point is rather

flat.

The subject problem is an interesting one as it is a particular example

that an elastic system is buckled by tension, although the real cause of the

instability is the co rrpressive hoop stress. Certainly, there remain many
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areas, fto future studies among them determination of the bucdling load by, large
deflection theory and consideration of initial imperfections. The testing res-u-lts
preisented here are rather sca-ree and ,sca-tter-ed, hardly enough to give any con-

clusiVe indication. Extensive and systematic e xperiments, in this respect ar:e

recomimended.
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